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TECHNICAL NOTE 3796

THEORETICAL LIFT DUE TO WING INCIDENCE OF SLENDER
WING-BODY-TAIL. COMBINATIONS AT
ZERO ANGLE OF ATTACK

By Alvin H. Sacks
SUMMARY

The theoretical 1lift of a cylindrical afterbody at zero angle of
attack due to incidence of the wing is determined by means of slender-
body theory. It is assumed that the vortex sheet becomes fully rolled
up shead of the base of the afterbody, and the paths of the vortices in
the presence of the body are determined. Since this requires the complete
solution of the classical problem of the motion of a two-dimensional vortex
pair past a circular cylinder, the analytical solution of that problem is
presented herein.

The total 1ift of a slender wing-body-tail combination due to inci-
dence of the wing is also calculated by meking use of the above solution,
and 1ift curves are presented for a variety of tail lengths, span ratios,
and body sizes. The 1lift due to the rolling-up of the vortex sheet is
included and is discussed in relation to the calculated results.

It is found that a short afterbody cerries positive 1ift and that a
long afterbody carries negative 1ift. Furthermore, there is a short after-
body length which carries a maximum positive 1lift and a long afterbody
length which carries a maximum negative 1lift.

INTRODUCTION

The problem of calculating the forcés on the body and tail of a
slender wing-body-tail combination has received relatively little atten-
tion from a theoretical. point of view, considering its importance. The
reason seems clear when one investigates the possibilities of obtaining
analytical solutions for the behavior of the wing wake. There are, how-
ever, certain classes of problems in this category which lend themselves
to analytical solution. In 1948, for example, Graham (ref. 1) calculated
the 1ift on the tails of some plane wing-tail combinations, and in 1952
Morikaws (ref. 2) investigated the "maximum" wing-body-tail interference
by assuming the wing vortices to be fully rolled up and to remain in the
plane of the wing and tail. In reference 3 the variations of 1ift and
pitching moment with angle of attack were obtained for a number of
slender wing-tail combinations.
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The references cited above have one point in common which highlights
the principal difficulty underlying all calculations of wing-body-tail
interference. Specifically, in no case have the positions of the wing
vortices in the presence of the body been calculated analytically. They
have on several occasions been obtained numerically (e.g., refs. 4 and 5),
but the number of specific configurations treated is relatively small
since each case requires a separate numerical calculation.

In the present paper, & class of problems is treated for which an
analytical solution will be obtained for the paths of the rolled-up vor-~
tices in the presence of the body. In particular, the combinations
treated will each consist of a cylindrical body at zero angle of attack
with a wing and tail at incidence. This problem is analogous to the
classical hydrodynamic problem of the motion of a two~dimensionsl vortex
pair past a circular cylinder. Although the equations of the vortex paths
for this latter problem have been given in many places (e.g., refs. 6
and 7), the elapsed time between successive positions has not been
expressed analytically to the author's knowledge. The present paper will
supply this solution which finally 1links the three-dimensionsal slender
problem directly to its two-dimensional analogue.

SYMBOLS
a body radius
A aspect ratio
d tail length or afterbody length, 1 - Xrm
e distance behind wing trailing edge at which vortex sheet
is essentially rolled up
K half the asymptotic spacing of the rolled-up wing vortices,
2 2
yl - &
—IE
Yimg 2 a2
yl',EE +
1 over-all length of wing-body-tail combination
L 1lift

r Jye + 22

radius of transformed circle corresponding to alirplane cross section

To
s local semispan of wing or tail
So maximum semispan of wing (et X = Xqp)
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Xyz

yl’zl

Ok

g kr

A

meximum semispen of tail (at x = 1)
exposed areas of both wing penels
£flight speed in the negative x direction

components of velocity of the starboard rolled-up vortex in the
positive ¥y and z directions

distance from airplane nose to position immediately behind wing
trailing edge

Cartesian coordinates fixed in the body as illustrated in
sketch (a)

y and z coordinates of starboard rolled-up vortex
angle of attack of the body (teken as zero throughout)
strength of one rolled-up vortex shed from the wing

circulation of kth external (free) vortex, positive counter-
clockwise (looking upstream)

circulation on the wing

incidence angle of surface relative to the body axis (and flight
direction), radians

y + iz
position of kth external (free) vortex, ¥ + izk

fluid mass density

'complex coordinate in transformed circle plane

position of kth external vortex In ¢ plane

position of kth external vqgtex relative to its image in the
transformed circle, oy - %2—
k

difference in potential between upper and lower surfaces




L

Subscripts
A afterbody (with no tail)
I due to vortex interference

1% wing (forward surface)

NACA TN 3796

BT body-tail combination (isolated segment of airplane behind wing

trailing edge)

WB wing-body combination (segment of airplane shead of wing trailing

edge)
T tail (rear surface)

TE wing trailing edge

Special Notations

R real part

(—§ complex conjugate of ( )

ANATYSTS

AL /
U°< (3 i ,’X
: S
\\\\\\\\- j: g 4\\\\\\ i
« 1 »
z /v Vaal
Uo — — = — 3 X

Sketch (&)

The class of slender
wing-body-tail combinations to
be treated in the present anal-
ysis is illustrated in

‘sketch (a). The body is a

circular cylinder of radius a
behind the wing trailing edge.
The wing and tail are at inci-
dence to the body as shown,

but the body is aligned with
the flight direction. The wing
and tail are thin flat plates

"whose straight trailing edges

lie in the planes x =
and x = 1 as shown above.
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Formulas for the Lift

In reference 8, it was shown that the interference 1lift of a slender
wing-body~tall combination in steady straight flight is given by

m m
LI = pUOR Zrkokl> - DUOR Zrkﬁkr (l)
=1

k=1 k=1
X=XTE+

where Gkr represents the (complex) distance between the kth shed

vortex and its image in the transformed circle plane, m is the number

of shed vortices, and R signifies the real part. Since the body of the
combination to be treated here is of circular cross section, the trans-
formation from the physical ({) plane to the circle (o) plene immediately
behind the wing trailing edge is simply { = 0. In this case it is easy
to verify that the last term of equation (1) is actually equsal to the
1lift of the wing-body combination ahead of the wing trailing edge. Thus,
if the vortex sheets leave the wing panels as flat sheets, we have at

X = Xqpy

Uk = §k =Y
and
ar
Ty = - a; dy
Hence
o0 +SO
ar
U R Zrkckr = -pU, f a7 dy (2)
k=1 -8
X=Xmg 4 ©
or, after an integration by parts,
o +54 +54 -
U R }:rk_okr = U, f I dy = oU, f opdy  (3)
‘ k=1 X=Xy =B84 =Bg

which 1s Jjust the slender-body formule for the 1ift of the wing-body
combination ahead of the wing trailing edge (see ref. 9).
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By virtue of equation (3), then, the interference lift of equa-
tion (1) can be expressed as

= pU R<§:Pkckr - Ly (&)

and the total lift of the wing-body-tail combination is given by

m
= Iyg + Ipp + L1 = U R zl"kckr + Ly (5)
k=1
x=1

Now, since both LWB and LBT are already known from slender-body theory
(see ref. 10), the problem of the present analysis is really that of
m

determining the camplex quantity Zrkokr at the base of the configura-

k=1
tion. For the plane wing-body-tail combinations to be considered in this
treatment (see sketch (a)), the mapping function of the base cross section
can be expressed as

z
-1 a2 a2 2
U—2§+T+~/<§+_§— ~ hrg (6)
The radius r, of the transformed circle is given by
. 2
To = -]é'- (sl + 5T (7)
vhere 8, 1is the semispan
L=T r C ™\ of the trailing edge
o (sketch (b)).

/-\ ﬁ- a Now since the complex
= < S y distance dlr between the
l—\ J \ starboard rolled-up vortex

and its image is given by

2
Oy = Oy - o (8)
¢ plane o plane 5y

(x=1) . (x=1)
Sketch (b)
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we £ind from equations (6) and (7) that

S S R RO By (RO N

(9)

Furthermore, by symmetry, (sketch (b))

I',=-T,=-r

and

e, = -E,

2
Therefore, the quantity }:Pkgkr at the base of the configuration can

=1
be expressed as

2
Zrk"kr FG&I. - 02r s = 2R <11 (s ) (10)
k=1 11

With this expression, equations (4) and (5) became®

20UTR [16,, + > (sl + EI - Iyp (11)
/ 39

L =
and.
2
a2 a2
L = 20U,TR 517, + El—z- - satEn) Lpp (12)

The only two quantities in the gbove expressions that are not imme-
diately known are the strength I' of the starboard rolled-up vortex and
its position at the tail trailing edge §1 . The remainder of the analysis

will therefore be devoted to the determination of these two quantities.

1The procedure for taking the real part of the square root without
ambiguity has been given in Appendix B of reference 8.
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Strengths and Initial Positions of the Rolled~Up Vortices

The spanwise circulation distribution over the wing of the combina-
tion of sketch (a) was given in a transformed plane in equation (59) of
reference 10 and can be expressed in the physical yz plane as

o2 o2
(s+§—> -(y+a—
— O -1 2a 8 - Y
Iy = Apy = —2 ¥y + % )tann > S
a a2 2
y'*‘T <S+—S— - Ly

N 2\? 28
4/(} +2) - (y + %%) cos™* = (13)

It will be assumed in the present analysis that the positions of the
rolled-up vortices can be determined with good accuracy by considering
the vortex sheets as fully rolled up immedistely behind the wing trailing
edge. In reference 11 this assumption was shown to be justified for the
case of no body (e =0). Therefore we
P4 shall determine the strength and posi-
tion of a rolled-up vortex at the wing
trailing edge to repleace the flat sheet
I e having the above distribution of

BN circulation.
[{ \Tw(y)
H The position Yipg and strength T

- y
S \\\\~ So of the rolled-up starboard vortex at the
wing trailing edge are found by requir-
‘ ing that the 1ift impulse supplied by
Yire— the wing panel be the same for the
rolled-up vortices as for the flat
Sketch (c) sheets. Thus, in view of sketch (c),
the known expression of slender-body
theory for the 1lift of both panels yilelds

e
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Iy _ 4 f _ f W2 ;
2

so that

= + a (15)

The value of I' is seen from sketch (c) to be equal to b at y==1
and s = sg and is therefore obtained directly fram equation (13). The
resulting expression for I' 1is

a,
2Us0ys0 2 -1 2 5o
I‘=—-E—— l'sa_é -g-+cos — (16)
0 1+ —5
o)

The 1ift of both wing panels of the combination has been given in
reference 10 and for the present case reduces to

5a° - & 2as
Iy = l2"F3U026V.J 12(' ( o oo ( - a.2> +2< )cos'l o >
8a2cot” 2 (302 * 8% cos-1( 2250 -
cot™t 5o 5. T X 8% SOE T a2 B

2as 6 2asg =1 8
8 = So - 82 )eos™Y ———5 ) + © aZcos™t —z———% JcOov T2
T 8o 8o2 + a2 n so= t+ a 50
2 2
2 .
-1 & 8 a s
l—f— a.2<cot L %) - =82 ——C . _ a2 (17)

€ 2
2 2
(SO +a>




With equation (16) end the sbove expression, then, the position of the starboard vortex at the trailing 5
adge is obtained directly from equa‘bion (155 The resulting latersl position in wing semispans 1s

SN2 2l £)- 22D Sl (EE > sl (‘E

) 21 )sm( )
(i)
aa

- ae\f © o
< 7 e -a'/J

This equaetion ie plotted in figure 1. Thuse the sthength and position of the rolled-up vortex et the

wing traildine :sﬂn-n are cr-l'ln:-'n 'h'u- aguations ('IA\ end {181 and the remeinder of the analveis will he
T ohlim, W el sl il =) N RASM WPl WAL LT \-l- \y-l-vl 3) G-I.J“-l-‘y 240 ool [ =A==

concerned with determining the vortex positions at some distance behind the wing. It will then be
possible te calculate the interference 1lift and the total lift of the wing-body-tail combinstion of
sketch (a) directly by means of equations (11) and (12).

(18)

Determination of the Vortex Positions Downstream

96LE NI VOVN

If we denote by d the distance behind the wing trailing edge and by t, the time for the eir-
plane to travel that distance at the constant speed U,, then we may write
t, Ya VR
d=0 f dt = U f L dy
° J o ay/at - o v, (19)
Yire g
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vhere y, 1is the lateral position of the starboard vortex at distance 4
behind the wing and v, 1s its component of veloecity in the y direction
induced by the port vortex and by the image vortices within the body.

Thus equation (19), if it can be integrated, offers a direct relationship
between the lateral position y, of the starboard vortex and the corre-
sponding distance d behind the wing trailing edge.

The induced velocity component v, can perhaps most easily be
expressed as the real part of the derivative of the appropriate complex
potential, which is the total potential minus the potential due to the
vortex in question. Thus (see sketch (d))

[ B0
2

v, = R{vy - iv1) = R i | o (20)
¢+5)
1
6=t
VA

vhere { =y + iz. Upon carrying out w,
the operations indicated, one finds _ r
after some algebraic manipulation (:th L v
that v, can be expressed in the ! ! !

form -&/;,7(3 év— &
2ra? 2z g
Rl e el G \\<ii__,//’/

vhere r2 = y2 + z2.

Now the integration of equation (19)
is to be performed along the path of the
vortex in the yz plane. That is, we Sketch (@)
must have a relation between y and z which defines the projection of the
vortex path on the yz plane. Expressions for the required path have

been given in many places (e.g., ref. 6, pp. 330-331) and can be written
in the coordinate system of sketch (d) as

2Kay
2 - g2 = —— (22)
y2 - K°
where K 1is a constant which depends on the initial position leE and.
on the body radius a. We shall now write 2z 1in the form

g = - Jr2 - y2 = ~ N(x2 - 82) + a2 - y2 - (23)
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noting that the minus sign is required since 2z is to have only negative
values for the present problem. That is, the vortex starts at the trail-
ing edge (z = 0) as shown in sketch (c) and moves downward as can be seen
from the directions of rotation shown in sketch (d). Now, making use of
equation (22) to note that

4
(r2 - a2)® + ba2y2 = ;Za_j? (2k)

we find that, after simplification, equation (21) for the velocity com-
ponent v, can be expressed as

5/4
MR S < R Y SR R (25)
hyay3K

Thus the distance d of equation (19) can finally be written as

i1
_ h:tan.Kf yody (26)
r Vi (y2- k2 *J 2y + (a2- y2) V32 - K2

This then is the integral to be evaluated.

It can easily be verified that the transformation

1
(;":[_T- K (27)
reduces equation (26) to the form
oxl ek [ 1)°
4. 2% f (v + ar (28)
r T T(T-LIN agT?® + 0™ + apT2+agT + a,

where
g = a, = - K?
a, = 8Ka + ha®
o, = 2K% - 8a2

ag = 4aZ - 8Ka
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The above integral is an incomplete elliptic integral of the third kind
and can be evaluated by means of reference 12 in terms of the roots of
the fourth degree polynomial inside the radical. Thus, if we divide out
the rational fraction in the integral, equation (28) becomes

iy
2nU, aK= Tar

r ) JE(T)“LLZ;J—E_({:)-LL Tg@lﬁ+8[ (T-:;ﬂ;)

where ‘ (29)

P(T) = agT® + a3 + apT + agT + ay

Tt can be shown that T = 1 is a root of P(r) so that all four of the
integrals in equation (29) are basic types which are integrated in refer-
ence 12, pages 95 to 137.

Since T = 1 is a root of the polynomisl P(7), the remaining roots
can be found by solving the cubic equation

;Eé;é%%z; = .5 (%az + 8Ka K%) 2 . (% 8Ka K%) 120

(30)

The solution is well known and can be found in many books (see, e.g.,
ref. 13, pp. 9 and 10) for all cases, but it can be shown, following the
notation of reference 13 that here

>0

_1 (k2 - 8Ka-ha2> <1l-a2—8Ka
3 K2

wt |

i T SR

(31)




so that only two ceses need to be considered. If q2 > p3, there is one real root and two conjugate
complex roots given by

2./D cosh [—- cosh‘l<p3/2>] - 3'37(1 - 8 a _ ) 2 KE

-~

Ty =
— -l o/ a N 1 /_ n 1, 32\ 7ot
Ty = ) cosh = COBhHW)J + ix/3p sinh L§ cosh‘lk————Pa,z)F -3 \.L -0~ & Ez—) } (32)
1 _f a 1 -1( q \y 1 8 _ gﬁ)
Tg = = NP cosh [g‘ cosh 1(@-—3-’7:3-)] - i‘J3~P ginh 1_3- cosh \I@-—!—g— i 3 \l -8 X b =)

On the other hand, if q_a < ps, there are three real roots given by

TJ_‘—E»JECOS[%- 05%—%-)]-%(1—8%-1&%;) 3

B i
cos“‘-(;%;j ++3p sin L%- cos'{;g%g)_ - %(l

f

wl-

._‘
N

U
:-c:lm

- &p cos

- %) & (33)

[ a AP . [ 1/ . 2\
L - M L 2 _ a ‘ S
T,' = -«p cos -—coslkpg—-T- -3p eln |3 co 1@— -=(1-8=-
3 L3 2/ E 3 K K?
To opder to uss the tables of elliptic integrals in reference 12; we must order the real roots of

the polynomial P(T) with respect toc one enother and with respect to ‘bhe 1limits of integration. Now
from equation (27), solving for T, Wwe find thet the limits of integration are

7T

96LE NI VOVN
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y.2 y v
To ==L + 2 ;gE + 2 ;?E 2;? - 1
f (3k)
¥,2 v, |¥.2
r,=-142 2 42 [ 4
i K2 K N K2 )

where leE is the lateral position of the centroid of vorticity at the

wing trailing edge and is given by equation (18). The position vy, is
of course a variable depending on the distence d downstream. It should
be noted that the plus sign was chosen on the above square roots since
the minus sign leads in scome cases to negative values of P(T) which give
imaginary vaelues for the distance d and therefore have no meaning.

Now, once the value of K ig determined, the roots of the poly-
nomial P(T) are given by equations (31) to (33), and the limits of inte-
gration are given by equation (34). Therefore, the final step required
before the integrations of equation (29) can be carried out is the deter-
mination of K. This has been done in reference 6, page 330, in terms of
the distance between the vortices and their images, and, since K is a
constant, we need only know the vortex positions at any one station, say
the trailing edge of the wing, in order to evaluate it. Thus, denoting
the positions of the starboard vortex and its image at 4 = O as Yimm

and Yipp - 5@3_, respectively, we £ind directly from the above refer-

ence that2
/v2 - a2
1TE y12 + a2

1TE
Ye are now in a position to calculate &ll the roots and the limits of
integration and therefore to order all the real roots as required.

The roots of P(T) are plotted in figure 2 and it is found that if
all the roots are real (eq. (33)) then they are ordered as follows:

Ty' > T>1>T' > (36)

2Tt is interesting to note that (see ref. 6) the constent K is half

the asymptotic spacing of the free vortices; that is, the spacing for
large d.
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It can be seen from figure 2(b) that two of the roots become equal at

about K]a = 0.296. For larger values of K/a, two roots are complex.
In this case (eq. (32)) we need only kmow that

T, >13 >1 (37)

Furthermore, it is found that the lower limit of integration T4 1is
actually equal to T,' 1if all the roots are real and is equal to T,
if two roots are complex, so that the lower limit is a root of P(T) in
2ll cases.

With the sbove information, equation (29) for the distance d behiné
the wing trailing edge can be expressed in two alternative forms depending
on whether the roots of P(7) are all real or not. Thus, if ¢ > p3,
where p and q are defined by equation (31), then P(v) can be written in
the form

P(r) = k(7 - 1)(7 - 7))(7 - mu)(7 - 7,)

K3(1 - 1)(7q = 7)(7 - )(7 - 73)

(38)

where T,, T,, and T, are given by equation (32) and are ordered accord-
ing to equation (37). Hence we can write equation (29) for this case in

the form

™

2l aK T T A ar
= — + 4 -
r Jr JkT—l)(Tl~T)(T—T2)(T—T3) Jc.J(T-l)(T1~T)(T-72)(T-T3)

T

Tz T

1
f ar + 8f ar
D () (o) 4, (WD) (r3om) (7-70) (7-73)

Ty

(39)

On the other hand if g% < p®, then the expressions corresponding to equa-
tions (38) and (39) are found by simply substituting the primed roots '
given in equation (33) for the unprimed roots in the above expressions.

The integrals of equation (39) can all be found in the tables of
reference 12, but extreme caution must be used in picking the proper forms
considering the ordering in equations (36) and (37) for the two cases.
For some of the integrals, the limits of integration will have to be
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interchanged with a corresponding change in sign, and for others it will
be necessary to divide the integral into two parts, as for instance,

T} 1 T, T3 T,
[-f+]-]-]
T, T, 1 11

for the case of two complex roots. In order to avoid any possible-con-
fusion in selecting the proper forms, we shall enumerate here the formulas
of reference 12 to be used. For the case of all real roots, the four
integrals of equation (39) are given respectively by formulas 257.11,
257.00, 257.12, and 257.29. For two roots complex, the corresponding
integrals are given by formulas 259.03, 259.00, 259.04, and 259.07. With
these formulas, then, equation (39) gives a direct relationship between
the lateral position y, of the starboard vortex and the corresponding
dovmstream distance d. Equation (39) is also of interest in connection
with the classical problem in hydrodynamics of the motion of a two-
dimensional vortex pair past a circular cylinder. In view of equation (19),
equation (39) gives the time elapsed between any two successive positions
of the vortices.

Now if we divide equation (35) by equation (16) we obtain the quan-
Tige

8¢

tity K esa function of gL and of
0

T which is also a function

of = as.given by equation (18). Therefore, since T3 is a function

Bo
of i% (eq. (34)), we cen write equation (39) in a more convenient form
as
4 f(yl > | (40)
Slo)
which gives us curves of 5w 4 vs. -R% for various chosen ratios of body
80

radius to wing semispan. Such curves are presented in figure 3 and curves

KU,
of 2 and <£%> (——9—E> against £ are given in figures 4 and 5.
K SO T =Te)
RESULTS AND DISCUSSION

In the remainder of this report we shall apply the foregoing analysis
to the calculation of 1lift for several different configurations. The
first calculations will be concerned solely with wing-body-afterbody
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combinations having no tail. Thus we set s, = a in equations (11)
and (12) to obtain respectively for the 1lift of the afterbody and the
1ift of the combination

a2

2T R{E s, - ) - Ty (1)
17

Ly

and

2
= 20U, TR(L,, -

(k2)
t,.

[
1

The wing-body 1lift Lyg with no afterbody is given in reference 10 as

2
jL li-—jg
Lys = ‘ PUo 8Wsoa< 5 %) cos=H ———n-
i
(1+3)

Now, with equation (43), with the results of the foregoing section
as summarized in figure 3, with equation (16) for TI', and with equa-
tions (22) and (23) for =z, it is a simple matter to calculate the after-
body 1lift and totel 1ift from equations (41) and (42) for various after-
body lengths and body-diameter to wing-span ratios. The results are
presented in figures 6 to 9 and it can be seen that there is a value of

Sy éL for which the (negative) 1ift on the afterbody is a maximum for

)
a given ratio of body radius to wing semispen (fig. 6). Similarly, for

a given BW éL, there is a value of é% for which the afterbody 1lift is

a negative maximum, as shown in figure 7. It will be noted that there is
a corresponding minimim of the total 1ift as shown in figure 8, and that
this maximum reduction in 1ift due to the afterbody is a sizable fraction
of the total 1lift.

Figure 6 indicates that the 1lift per unit wing incidence carried on
d. d
the afterbody is positive for small By E; and negative for large Oy 5

Also, an increase of the afterbody length apparently always results in a
reduction of 1lift for short afterbodies. However, the actual values must

be viewed with caution near SW — = 0 since figure 8 shows an incon-
sistency there. That is, the total 1lift per unit wing incidence for no

afterbody | By EL-= é), according to the present theory, does not agree
o
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1

with %?E as given by equation (43). The reason for this discrepancy is
W N

the assumption here that the vortex sheet is fully rolled up at x = 1.
That is, the present analysis is applicable only to combinations having

an afterbody length at least as great as the distance required for the
vortex sheet to become fully rolled up.

An estimate of the distance e for rolling up of the vortex sheet
can be obtained directly from the formula given in reference 11

k 2
e _ AR E§_> (u)
2s . Cr,  Cr, \Sy

provided that we replace s by (so - a). In this manner, using equa-

tions (15) and (16) and replacing Cj, by I—;EHE——, we find

o \2
e _ 1 Elo)

50 . o) éL
_lm - i 1 + _&_ lt. + COS-l —_10

8¢ 8¢ 8o/ 2 1+ a2
2

So

(45)

Now Kaden (ref. 14) has given a value for k, of 0.28 for wings with
elliptic circulation distribution, but in reference 15 it has been pointed
out that this value is much too low to agree with numerical calculations.
For our purpose here, namely to obtain an estimated lower limit for

SW.E; of the present calculations, it will be sufficient to take twice
5

o]
Kaden's value; that is, k, = 0.56. That this is a reasonable choice can

be verified by comparing with the numerical results of reference 16 for
a8 plane wing.

The values of SW-£L for rolling up of the vortex sheet, as given

o
by equation (45) using k, = 0.56, have been calcylated and the curves of
figure 8 have been modified by the dashed lines to agree with Iyg at

EL = 0. If can be seen that a short afterbody is still expected to
] 50

give positive 1lift, as indicated by figure 6. However, the curves of
figure 6 should actually pass through the origin in agreement with the
dashed curves of figure 8. It then becomes clear that the afterbody 1lift

has a positi%e maximim at some small GW'gL as well as a negative meximum
o
at a rather large Oy éL.
o
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Another indication of the error at small values of By gL is given
o

by the curve for Bw-g; of zero in figure 7. Since this curve should

actually coincide with the axis (i.e., it should indicate no 1lift on an

afterbody of zero length), the values shown are a direct measure of the

error involved. This error is of course a maximm at Oy éL =0 and
o

diminishes to zero at BW'E% as shown in figure 8.

It might be of interest to consider for a moment the physical sig-
nificance of the discrepancy discussed above between the present theory

and ordinary slender-body theory for small values of OJy éL (i.e., for
o

short afterbodies). Ordinarily, in discussions of the rolling up of the
vortex sheet behind a wing, we make frequent use of the fact that the

1lift impulse is unchanged during the rolling-up process. The reason for
this invariance, of course, is the absence of a body capable of sustaining
a force in the wake. For the problem treated here, however, such a body
is present in the wake, the lift impulse vearies with distance downstream,
and there is a force carried on the body just due to the rolling up of

the vortex sheet. It is in fact Jjust this 1lift which is the value indi-

cated in figures 6 and 7 at dy -sﬁi- = 0, and it is seen that this lift is
positive in all cases.

In figure 9, the calculated curves of total 1ift as & function of
wing incidence are presented for a number of wing-body-afterbody combinsa-
tions. The 1lift curves are, as expected, increasingly nonlinear as the
body-diameter to wing-span ratio is increased and as the afterbody length
is increased.

Now since equation (12) was actually developed for wing-body-tail
combinations, assuming that the tail has no influence on the vortex posi-
tions, we can calculate the total 1ift for such combinations directly
from that equation. The strengths and positions of the rolled-up vortices
are again given by equations (16) and (39) and the length d now becomes
the tail length, that is, the distance between the trailing edges of wing
and tail. The calculated 1lift curves are presented in figures 10 and 11
for two ratios of tail span to wing span, one less than 1 and one greater
than 1. TIn both cases, the tail is at zero incidence so that Ipp =
For other tail incidences, Lpp 1s given in reference 10.

In figure 10 the tail span is half the wing span and the 1ift curves
for the smellest body radius shown (a/sy = 0.2) are almost linear for all
the tail lengths calculated. The curves evidently become increasingly
nonlinear as the body radius is increased and as the tail length is
increased. For the largest body radius (a/sg = 0.8) and the longest tail
length (d/sq = 24), the lift curve slope changes sign at a fairly small
angle of incidence (8w = 8.5°). IFf the tall span 1s somewhat greater than
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the wing span (e.g., sl/so = 1.5, fig. 11), the lift curves are more non-
linear and the effect of increasing the. tail length is more pronounced

CONCLUDING REMARKS

A theoretical analysis has been made of the 1ift produced on the
afterbody end tail of a slender plane wing-body-tail combination at zero
angle of attack due to incidence of the wing. It was assumed throughout
the anslysis that the vortex sheets leaving the wing panels become fully
rolled up ahead of the trailing edge.of the tail or the base of the
afterbody. )

- The 1lift produced on the afterbody with no tail was found to have a
positive maximum at a certain short afterbody length and a negative maxi-
mm at a certain very large afterbody length. The rolling up of the
vortex sheet was found to produce a positive 1ift on the afterbody.

The total lifts of some plane wing-body-tail combinations having
tail spans less than and- greater than the wing span were calculated, and
the 1ift curves were found to become increasingly nonlinear as the ratio
of body diameter to wing span was increased.

The 1ift due to wing incidence as calculated in the present report
cannot be added directly to the 1lift of the body at angle of attack since
inclining the body would alter the paths of the rolled-up vortices. As
a matter of fact, if the angle of attack of the body is not zero, the
path of the integration required to relate the vortex positions to the
distance behind the wing becomes transcendental rather than algebraic as
in the present case. Therefore, application of the methods employed here
does not seem feasible for problems in which the body is not aligned with
the flight direction.

Ames Aeronsutical Laboratory
National Advisory Committee for Aercnautics
Moffett Field, Calif., Aug. 14, 1956
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Figure 1l.- Lateral position of starboard vortex at wing trailing edge;
Plane wing-body-tail combination, @ = 0, 8y # 0, (eq. (18)).
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